An Algorithm for Variable Density Sampling with Block-Constrained Acquisition
نویسندگان
چکیده
Reducing acquisition time is of fundamental importance in various imaging modalities. The concept of variable density sampling provides a nice framework to address this issue. It was justified recently from a theoretical point of view in the compressed sensing (CS) literature. Unfortunately, the sampling schemes suggested by current CS theories may not be relevant since they do not take the acquisition constraints into account (for example, continuity of the acquisition trajectory in Magnetic Resonance Imaging MRI). In this paper, we propose a numerical method to perform variable density sampling with block constraints. Our main contribution is to propose a new way to draw the blocks in order to mimic CS strategies based on isolated measurements. The basic idea is to minimize a tailored dissimilarity measure between a probability distribution defined on the set of isolated measurements and a probability distribution defined on a set of blocks of measurements. This problem turns out to be convex and solvable in high dimension. Our second contribution is to define an efficient minimization algorithm based on Nesterov’s accelerated gradient descent in metric spaces. We study carefully the choice of the metrics and of the prox function. We show that the optimal choice may depend on the type of blocks under consideration. Finally, we show that we can obtain better MRI reconstruction results using our sampling schemes than standard strategies such as equiangularly distributed radial lines. Key-words: Compressed Sensing, blocks of measurements, blocks-constrained acquisition, dissimilarity measure between discrete probabilities, optimization on metric spaces.
منابع مشابه
An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملHighly Undersampled 3D Golden Ratio Radial Imaging with Iterative Reconstruction
Introduction Compressed Sensing (CS) [1,2] suggests that using nonlinear reconstruction algorithms based on convex optimization an accurate signal reconstruction can be obtained from a number of samples much lower than required by the Nyquist limit. Recently, CS was demonstrated for MR imaging from undersampled data [3, 4]. Prerequisites for a good image reconstruction are the image compressibi...
متن کاملA Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
متن کاملGradient waveform design for variable density sampling in Magnetic Resonance Imaging
Fast coverage of k-space is a major concern to speed up data acquisition in Magnetic Resonance Imaging (MRI) and limit image distortions due to long echo train durations. The hardware gradient constraints (magnitude, slew rate) must be taken into account to collect a sufficient amount of samples in a minimal amount of time. However, sampling strategies (e.g., Compressed Sensing) and optimal gra...
متن کاملROBUST RESOURCE-CONSTRAINED PROJECT SCHEDULING WITH UNCERTAIN-BUT-BOUNDED ACTIVITY DURATIONS AND CASH FLOWS I. A NEW SAMPLING-BASED HYBRID PRIMARY-SECONDARY CRITERIA APPROACH
This paper, we presents a new primary-secondary-criteria scheduling model for resource-constrained project scheduling problem (RCPSP) with uncertain activity durations (UD) and cash flows (UC). The RCPSP-UD-UC approach producing a “robust” resource-feasible schedule immunized against uncertainties in the activity durations and which is on the sampling-based scenarios may be evaluated from a cos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 7 شماره
صفحات -
تاریخ انتشار 2014